
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Use Case: Warranty Fraud Detection 
 

White Papers 
  



 

 

Page 2 of 6 

OBJECTIVE 

The goal of this project was to build machine learning models for an electronics manufacturer 

that use customer profile data, geographical data, product data, and warranty claims data to 

predict whether a warranty claim is genuine or fraudulent. As experts expect around 5-15% of 

warranty claims to be fraudulent, a successful warranty fraud detection algorithm could help 

companies save millions of dollars annually.  

DATA 

To carry out our objective, we extracted a dataset with 11,917 observations and 20 seemingly 

significant features. Each observation represented a warranty claim that was either genuine or 

fraudulent. As expected, the target variable (label) was imbalanced, since around 8% of the 

observations were fraudulent and approximately 92% of the observations were genuine.  

PREPROCESSING 

Preprocessing steps included handling missing values, encoding categorical features, dropping 

unnecessary columns, standardizing redundant values, feature engineering, and encoding the 

outcome variable (label). The reason that we encoded the categorical string features into 

dummy numerical features was that machine learning models tend to perform better when text 

classes are translated into binary inputs. 

Furthermore, before moving on to the modeling section of our project, we performed a holistic 

exploratory data analysis to understand the characteristics and nature of the data. 

MODEL BUILDING AND EVALUATION #1: BENCHMARK 

Although the dataset was imbalanced, as it had a clear majority of warranty observations that 

were genuine, we first created a set of benchmark models in which we did not equalize the 

label classes by oversampling or undersampling the data. In addition, for these benchmark 

models, we did not perform feature selection techniques and, therefore, used all 20 features to 

predict the legitimacy of a warranty claim. 

Next, we randomly split the data frame into a training set (80%) and a testing set (20%). 

Subsequently, we built the following machine learning algorithms on the training set: (1) 

Logistic Regression, (2) Support Vector Machines, (3) Multi-Layer Perceptron (Artificial 

Neural Networks), (4) Random Forests, and (5) Gradient Boosting. 

For each of the five algorithms, we tested hundreds of model iterations by tuning the model 

hyperparameters in each iteration. To select the best model within each algorithm, we 

performed cross-validation with k=5 and selected the model with the highest cross-validation 

classification accuracy. Therefore, at the end of the first model building stage, we chose a total 

of five models from a set of over thousand models. More specifically, we chose the best 

Logistic Regression model, the best Support Vector Machines model, the best Multi-Layer 

Perceptron model, the best Random Forests model, and the best Gradient Boosting model. 

Next, we used each of these models to predict the outcome of the observations in the testing 

set. Note that this step emulates predicting real data, as these models have never seen these 

observations before. After predicting each observation in the testing set, we compared the 

predictive accuracies of the five models. The metrics that we used were overall classification 

accuracy, precision, and recall. 



 

 

Page 3 of 6 

The best overall model was the Gradient Boosting model with a learning rate of 0.1, max depth 

of 5, and number of estimators of 250 (amongst 20+ other hyperparameters).  The results were 

as follows: 

• Accuracy: 97.3% 

• Precision: 90.1% 

• Recall: 81.5% 

 

 
 

 

MODEL BUILDING AND EVALUATION #2: FEATURE SELECTION 

In the second model building phase, we added an extra layer of complexity relative to the 

benchmark models. To be specific, we performed feature selection to isolate the most 

significant features in terms of predictive power. In this phase, we did not address the 

imbalanced nature of the data frame. 

To conduct feature selection, we used a wide variety of techniques on the training data. It is 

crucial to use feature selection techniques only on the training data and not the entire dataset 

to avoid overfitting the models to the unseen testing data. First, we looked at the variable 

importance from the Random Forest model previously trained. Second, we performed the 

following feature selection techniques: F-Classif, Chi-square, and F-Regression. All feature 

selection techniques were consistent, as they selected very similar top features. Third, we used 

the ExtraTreesClassifier to perform feature selection. Fourth, we used the Recursive Feature 

Elimination (RFE) technique. As we found the cross-validation accuracy to be higher (with 

Random Forests) using the features given by the RFE technique, we proceeded with the RFE 

method. 

The next step was to evaluate the optimal number of features to select using RFE. Accordingly, 

we iteratively added features based on their predictive power, starting from the top 1 feature 

until all the features were added. For each iteration, we logged the cross-validation 

classification accuracy. It is important to note that we had a total of 94 features, as opposed to 



 

 

Page 4 of 6 

the initial 20 features, as we performed feature engineering and created dummy variables for 

categorical features. 

The figure below (one of 10 figures that we used to select the optinal number of features) shows 

that using 48 variables yielded the highest cross-validation accuracy. 

 
 

Next, we performed the same steps as the previous phase: we built hundreds of iterations of 

each of the five machine learning algorithms highlighted above (to tune hyperparameters), 

selected the best model in terms of cross-validation accuracy within each algorithm class, and 

evaluated the top five models on the testing set. 

The best overall model was the Gradient Boosting model with a learning rate of 1, max depth 

of 7, and number of estimators of 50 (amongst 20+ other hyperparameters).  The results were 

as follows: 

• Accuracy: 97.7% 

• Precision: 86.5% 

• Recall: 89.8% 

 



 

 

Page 5 of 6 

MODEL BUILDING AND EVALUATION #3: SMOTE 

In the third model building phase, we addressed the imbalance problem of our dataset by using 

an oversampling technique called Synthetic Minority Over-Sampling Technique (SMOTE). 

This technique was essentially used to equalize the two label classes to 50% each. However, in 

this phase, we used all the variables and not the top 48 variables given by feature selection. It 

is essential  to note that the oversampling was only done for the training set observations and 

not the testing set records, because we want our models to predict true and not synthetic 

observations. 

As such, we built hundreds of iterations of each of the five machine learning algorithms (while 

tuning hyperparameters), selected the best model in terms of cross-validation accuracy within 

each algorithm class, and evaluated the top five models on the testing set. 

The best overall model was the Gradient Boosting model with a learning rate of 0.1, max depth 

of 5, and number of estimators of 250 (amongst 20+ other hyperparameters).  The results were 

as follows: 

• Accuracy: 96% 

• Precision: 71.5% 

• Recall: 97.5% 

 
 

MODEL BUILDING AND EVALUATION #4: AZURE ML 

In the fourth model building phase, we leveraged Microsoft Azure’s Machine Learning Studio 

to recreate the previous machine learning models built. We experimented with various 

combinations of pipelines: (1) No feature selection and no SMOTE, (2) Feature Selection and 

no SMOTE, (3) SMOTE and no feature selection, (4) Feature Selection and SMOTE, and (5) 

Custom Azure ML model. The custom script consisted of an untrained Gradient Boosting 

model with the optimal hyperparameters, no feature selection, and no oversampling technique. 

For each of these pipelines, we built hundreds of models based on the five machine learning 



 

 

Page 6 of 6 

algorithms outlined above with the objective of tuning hyperparameters to maximize predictive 

accuracy. 

Next, we used each model to predict the observations in the testing set and evaluated their 

performance.  

MODEL SELECTION 

The best model in the second phase yielded the highest overall accuracy of 97.7%, whereas the 

best model in the third phase yielded the highest recall of 97.5%. Since the ultimate objective 

of the project was to identify as many fraudulent claims as possible, the model with the higher 

recall was more suited to our goal. However, the downside to picking this model is a lower 

precision, meaning that it flagged a higher number of genuine claims as fraudulent relative to 

the other model. In essence, this model correctly detected 97.5% of all the warranty claims that 

were actually fraudulent.  

MODEL DEPLOYMENT 

Using the model built in the second phase, we deployed a web service inference pipeline that 

allowed the end-user to make real-time predictions and provided the option to make batch 

predictions. Furthermore, we also created applications using Flask and Swagger API, thereby 

allowing the end-user to make single-instance predictions and/or batch predictions using the 

best machine learning model.  

Finally, we containerized the final model, application, dependencies, libraries, etc. into a 

Dockerfile, which allowed the end-user to deploy the entire package without technical issues. 


